
THE OMICS ERA
Genomics and its applications; Proteomics and 
single-cell technologies



Sanger sequencing
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https://www.abmgood.com/marketing/knowledge_base/next_generation_sequencing_introduction.php#sanger



Sanger sequencing
• https://www.youtube.com/watch?v=jFCD8Q6qSTM&list=PL_Vc

B7OJ1TCAWRXN6vnC5lKbMHjlMtN8P&index=2
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Human Genome Project
• Used Sanger Sequencing
• Took ~13 years (started in 1985!!!)
• Spent ~3 billion USD!!!
• Today: ~100 USD

LIFS 6170

DNA sequencing costs: data from the NHGRI Genome Sequencing 
Program (GSP). http://www.genome.gov/sequencingcosts/.

Nature editorial staff (2010). Human genome at ten: The sequence 
explosion. Nature, 464, 670-671. doi:10.1038/464670a



Next-generation sequencing (NGS)
• Massively parallel
• Huge output of data
• Decreasing costs
• Fast
• https://www.youtube.com/watch?v=jFCD8Q6qSTM&list=PL_Vc

B7OJ1TCAWRXN6vnC5lKbMHjlMtN8P&index=2
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Roche 454: Pyrosequencing
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Jacopo Pompilii, DensityDesign Research Labhttps://commons.wikimedia.org/w/index.php?curid=37083509
http://bitesizebio.com/19008/how-bisulfite-pyrosequencing-works/



Roche 454: Pyrosequencing
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ML Metzker, Nature Review Genetics, 2009

https://youtu.be/jFCD8Q6qSTM?t=3m40s`



SOLiD: Sequencing by Ligation
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Figures from Applied Biosystems website https://youtu.be/jFCD8Q6qSTM?t=5m33s



Ion Torrent
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http://www.genomics.cn/en/navigation/show_navigation?nid=2640

https://youtu.be/jFCD8Q6qSTM?t=6m42s



Illumina: Sequencing-by-synthesis (SBS)
• Video: https://www.youtube.com/watch?v=HMyCqWhwB8E
• Video: 

https://www.youtube.com/watch?v=jFCD8Q6qSTM&list=PL_Vc
B7OJ1TCAWRXN6vnC5lKbMHjlMtN8P&index=2
• Illumina company PDF: 

https://www.illumina.com/content/dam/illumina-
marketing/documents/products/illumina_sequencing_introducti
on.pdf
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Illumina: Sequencing-by-synthesis (SBS)
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http://www.3402bioinformaticsgroup.com/service/



Pacific Biosciences: SMS
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ML Metzker, Nature Review Genetics, 2009



Pacific Biosciences: SMS
• https://www.youtube.com/watch?v=NHCJ8PtYCFc&list=PL_Vc

B7OJ1TCAWRXN6vnC5lKbMHjlMtN8P&index=4
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4th Generation Sequencing!!!
• NANOPORES!!!
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Schaffer, MIT Technology Review, 2012



Nanopore Sequencing
• Rated lifetime of one MinION flow cell: 48 hours of run time
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Oxford Nanopore
• https://www.youtube.com/watch?v=CE4dW64x3Ts&index=5&li

st=PL_VcB7OJ1TCAWRXN6vnC5lKbMHjlMtN8P

Angela Wu LIFS 5010 16



Summary of NGS technologies
Company
(former companies) Platforms Library 

amplification

Carrier of 
library during 
sequencing

Sequencing 
principle

Nucleotide 
modifications Signal detection method

Dominant 
sequencing 
error

Main advantages Main 
disadvantages

Helicos Bioscience
(defunct) Heliscope None Flow cell Sequencing by 

synthesis

Fluorescently 
modified 
nucleotides 
(cleavable)

High powered optical 
detection of single 
fluorescence molecules

Indels

No amplification 
thereby avoiding 
biases; higher 
tolerance of degraded 
samples

Long time (imaging 
is slow); high error 
rate; short read 
length; huge, $$ 
machine

Roche
(454 until 2006)

454 Titanium
454 FLX+
454 GS Junior 
Titanium

emPCR on 
microbeads Picotiterplate Pyrosequencing None

Optical detection of light 
(luciferase reaction using PP i

released upon dNTP 
incorporation)

Indels in 
homopolymer
runs

Longer reads than
most other NGS 
platforms, relatively 
high fidelity

Shorter read than 
Sanger; lower 
output/yield – high
price per base

Illumina 
(Solexa until 2007)

MiniSeq
MiSeq
NextSeq 500
HiSeq 2500
HiSeq 4000
HiSeq X five/ten

Bridge-PCR
on flow cell 
surface

Flow cell

Reversible 
terminator 
sequencing by 
synthesis

End-blocked 
fluorescent 
nucleotides

Optical detection of 
fluorescence from 
incorporated nucleotides

Substitution,
esp at end of 
reads

Good support; 
reasonable read 
lengths; low cost per 
read; flexibility in 
output/scalable; 
reasonable error rates

Generally higher 
instrument cost; 
bigger machines; 
long sample prep; 
amplification bias

Thermo Fisher Scientific
(Agencourt until 2006, 
Applied Biosystems until 
2008, Life Technologies 
until 2014; 
Ion Torrent until 2010, Life 
Technologies until 2014

SOLiD 5500
SOLiD 5500xl
SOLiD 5500W

emPCR on 
microbeads FlowChip Sequencing by 

ligation

2-base
encoded 
fluorescent 
oligoNTP

Optical detection of 
fluorescent emission from 
ligated dye-labeled oligoNTP

Substitution
High accuracy; High 
throughput of 20-
30Gb/day

Relatively short 
reads; less even 
data distribution; 
High capital cost

Ion Torrent PGM
Ion Torrent Proton
Ion Torrent S5/S5xl

emPCR on 
microbeads

Ion Chip 
(semiconductor 
based)

Semiconductor-
based sequencing 
by synthesis

None
Transistor-based detection
of H+ shift upon nucleotide 
incorporation

Indels
Generally moderate
cost instrument; easy 
to use

More hands-on 
time; higher cost
per Mb; small user 
community

Pacific Biosciences PacBio RS II
PacBio Sequel None

SMRT cell 
(zero mode 
wave guides)

Single-molecule, 
real-time DNA 
sequencing by 
synthesis

Phosphor-
linked 
fluorescent 
nucleotides

Real-time optical detection of 
fluorescent dye in 
polymerase active site 
during  nucleotide 
incorporation

Indels

Single molecule real-
time sequencing; Long 
read length; can detect 
base modifications; 
Short instrument run 
time; Random error 
profile; Modest cost 
per sample

High error rate; Low 
output; High cost 
per Mb; High 
instrument cost

Oxford Nanopore
minION
PromethION
(coming soon)

None Flow cell
Single-molecule, 
real-time direct
DNA sequencing 

None

Semiconductor-based
detection of changes in 
electron flow through 
nanopore protein; each base 
blocks electron flow through 
the nanopore differently as it 
passes through

Indels

Very small, low-cost, 
portable instrument 
(USB device); very 
long reads feasible 
(multiple kb); 
potentially very fast

High error rate; 
systematic errors; 
High cost per read



Latest in sequencing technology – Error 
Correction Code (ECC) Sequencing

Chen, Z., Zhou, W., Qiao, S., Kang, L., Duan, H., Xie, X. S., & Huang, Y. 
(2017). Highly accurate fluorogenic DNA sequencing with information theory–
based error correction. Nature biotechnology, 35(12), 1170.



Latest in sequencing technology – Error 
Correction Code (ECC) Sequencing

Chen, Z., Zhou, W., Qiao, S., Kang, L., Duan, H., Xie, X. S., & Huang, Y. (2017). Highly accurate fluorogenic 
DNA sequencing with information theory–based error correction. Nature biotechnology, 35(12), 1170.



Latest in sequencing technology – Error 
Correction Code (ECC) Sequencing



ECC sequencing – error free up to 250 bp!

Chen, Z., Zhou, W., Qiao, S., Kang, L., Duan, H., Xie, X. S., & Huang, Y. (2017). Highly accurate fluorogenic 
DNA sequencing with information theory–based error correction. Nature biotechnology, 35(12), 1170.



Project
Which sequencing 

platform(s) would you 
propose?

Why?

De novo sequencing and 
assembly of a microbial 
genome

Sequencing a plasmid

Re-sequencing a human 
genome (e.g. cancer sample) to 
look for novel mutations

Rapid diagnosis of a viral
infection by sequencing in the 
field

Targeted amplicon/exome 
sequencing 



Applications of NGS
• Your ideas

April 27, 2020 BIEN 5010 23



Applications of NGS
• Cancer research
• Pre-natal diagnostics
• Discovery of new microbial or viral species
• Predicting organ transplant rejection

April 27, 2020 BIEN 5010 24



Applications of NGS
• Cancer research and diagnosis
• Personal cancer genomes
• RNA-seq comparing normal tissue to cancer tissue

• E.g. Breast Cancer types
• ER+ or PR+ (drug tamoxifen to block hormone receptors)
• HER2+ (drug herceptin)
• Triple positive 
• Triple negative (often BRCA1+; chemo, high chance of relapse)

April 27, 2020 BIEN 5010 25



Applications of NGS
• Pre-natal diagnostics
• DNA
• RNA

April 27, 2020 BIEN 5010 26

From Ariosa website
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Lillian M. Zwemer, and Diana W. Bianchi Cold Spring Harb Perspect Med 2015;5:a023101

Applications of NGS
• Pre-natal diagnostics
• DNA
• RNA



Applications of NGS
• Predicting organ transplant rejection
• DNA of donor
• RNA of microbes and viruses

April 27, 2020 BIEN 5010 28



Applications of NGS
• Predicting organ transplant rejection
• DNA of donor
• RNA of microbes and viruses

April 27, 2020 BIEN 5010 29

De Vlaminck et al., Science Translational Medicine, 2014



Applications of NGS
• Discovery of new microbial or viral species
• De novo assembly

April 27, 2020 BIEN 5010 30



Applications of NGS
• Tools in the research lab: WGS, WES, RNA-seq, ChIP-seq, 

CHIRP-seq, methyl-seq, Hi-C, PRO-seq, ATAC-seq… etc.

LIFS 6170



RNA-seq
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Image from BiteSize Bio



RNA-seq
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Example of data

Schulz MH, et al., Bioinformatics, 2012

Which of the three transcripts is expressed with highest abundance?



RNA-seq
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Example of data

Schulz MH, et al., Bioinformatics, 2012



ChIP-seq

• ChIP: assesses protein-DNA 
interactions

Fix & lyse cells

Fragment 
chromatin

Input: no 
IP

IP & wash

Extract & analyze 
DNA

LIFS 6170



ATAC-seq

LIFS 6170

Interrogates 
chromatin 
accessibility

Easy to perform 
(compared to 
FAIRE-seq, 
MNase-seq, 
DNAse-seq etc.)

Buenrostro J.D., et al., Nature Methods, 2013



Hi-C

LIFS 6170

Probes 3D conformation of the genome architecture

Rao et al., Cell, 2014



SINGLE-CELL OMICS
One field (among many) that is greatly enabled by 
microfluidic technologies

Angela Wu 38



Why single cell?
• Tissues consist of heterogeneous cell types
• Method can be used for rare/valuable cell types
• e.g. circulating tumor cells; primary embryonic tissues

Population-level average 
from bulk profiling

Single-cell profiling

Heterogeneous cell 
population

39

ß stem cell!



Single-cell genomics workflow

40



SINGLE CELL RNA-SEQ



Many technology platforms to choose from

   
 T

hro
ughput        Hands-on Tim

e
Mouth Pipet

Dissociation

beads with barcode

Droplets & Microwell

FACS sorting/RobotMicrofluidics
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Wu, Wang, Streets, and Huang, Annual 
Review of Analytical Chemistry, 2017



Captured cells in the C1

April 27, 2020 43IEEE-NANOMED 2016
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Single cell transcriptomics methodology
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Lysis & RT
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Wu, Wang, Streets, and Huang, Annual 
Review of Analytical Chemistry, 2017



Benchmarking single-cell RNA-seq vs. other 
gene expression measurements

46

Wu, et al., 2014, Nature Methods



What does the data look like?

Camara P. G.., 2018, Current Opinions in Systems Biology



Data workflow for single-cell RNA-seq

Zappia L., Phipson B., Oshlack A., 2018, PLoS Computational Biology



Accuracy of single cell RNA-seq

Wu, et al., 2014, Nature Methods
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Limit of detection

Wu, et al., 2014, Nature Methods

• Spike-in synthetic 
sequences with various 
length, sequence 
content, concentration.  
Low homology with 
mammalian genomes

• Limit of detection: 
~1 molecule per 
reaction chamber

• Detection rate at 
this conc ~0.4
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Ensemble of single cells recapitulates bulk 
population measurement

Wu, et al., 2014, Nature Methods
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Ensemble of single cells recapitulates bulk 
population measurement

Level of dispersion about the median is similar for synthetic ensemble and bulk samples; 
single cell samples have relatively higher dispersion for genes with high expression level

Wu, et al., 2014, Nature Methods
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Features of single cell transcriptomic datasets

• Accuracy, or “how quantitative?”
• Sensitivity, or “how deeply do I need to sequence?”
• Technical/Stochastic vs. Biological variation, i.e. the noise

Real Transcript Abundance

M
ea

su
re

d 
Tr

an
sc

rip
t A

bu
nd

an
ce

A) Not Sensitive B) Not Precise

C) Systematically Biased D) Not Accurate
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Wu, et al., 2014, Nature Methods



Microfluidics sample preparation improves 
RNA-seq sensitivity

Wu, et al., 2014, Nature Methods
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Studying lung development using single-cell 
gene expression analysis

• Developmental lung biology:
• Cell differentiation is directional 
• Progenitors persist longest at the tips
• Widening of airway structures to form alveolar sacs

Treutlein*, Brownfield*, Wu, et al., 2014, Nature
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RNA-seq identifies bipotent progenitor cells 
in alveolar development

• PCA found genes with highest loading at day E18.5 (late sacculation) 
• Unsupervised clustering revealed bipotent progenitors

Treutlein*, Brownfield*, Wu, et al., 2014, Nature
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Reconstructed differentiation pathway of BPs 
into AT1 and AT2 lineages 

• Using genes identified in 
BP, AT1, and AT2, individual 
cells can be classified into 
sub-populations of 
intermediate cell types 
between BP and mature 
AT1 or AT2
• Reconstruction of lineage 
differentiation based on 
gene expression
• Additional support from 
pathway analysis

Treutlein*, Brownfield*, Wu, et al., 2014, Nature
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What can we do with single-cell RNA-seq?

LIFS 6170



The Human Cell Atlas
A “Google Maps” For the cells in the human body

…Can it really be done? How?

LIFS 6170



Many technology platforms to choose from

   
 T

hro
ughput        Hands-on Tim

e
Mouth Pipet

Dissociation

beads with barcode

Droplets & Microwell

FACS sorting/RobotMicrofluidics
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Wu, Wang, Streets, and Huang, Annual 
Review of Analytical Chemistry, 2017



Microfluidic droplets applied to NGS
• Using droplets as chambers, we can increase throughput even 

more, to ~100,000 single cells per run!
• Two Harvard groups published similar technology recently:
• Drop-seq - https://vimeo.com/128484564
• inDrop - https://vimeo.com/126829858

Angela Wu 61

Drop-seq: http://www.sciencedirect.com/science/article/pii/S0092867415005498
inDrop: http://www.cell.com/cell/fulltext/S0092-8674(15)00500-0



Microfluidic droplets applied to NGS

Angela Wu 62

“Barnyard 
experiment”



Single-cell resolution profiling of a whole organism!
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  RESEARCH ARTICLE 
 

Cite as: N. Karaiskos et al., Science 
10.1126/science.aan3235 (2017).  

Intricate gene regulatory networks produce and maintain 
complex assemblies of specialized cells such as tissues and 
organs. To unravel the underlying gene expression dynam-
ics, significant efforts have been made to compare tissue-
specific materials (1–4). Cell culture often constitutes a poor 
proxy for in vivo complexity, and dissected tissues are com-
prised of heterogeneous cell populations (3–10). An alterna-
tive is isolation of specific cell types via cell sorting (11–14); 
however, pooled cells obscure heterogeneity and expression 
in rare populations of cells may not be detectable. Further-
more, transcriptional relationships at the single-cell level, 
such as exclusivity and concomitancy of expression of 
groups of genes, cannot be distilled. This restricts our ability 
to infer gene regulatory relationships, to predict what func-
tional roles individual cells play and how they integrate 
with their spatial environment. With the advent of single-
cell expression profiling, it has become possible to assess the 
transcriptomic landscape of complex cell mixtures with sin-
gle-cell resolution, thereby allowing insights into differenti-
ation trajectories, cell fate decisions, spatial relationships, 
and rare cell types (15–21). 

The Drosophila melanogaster embryo has been an ex-
quisite model for the patterning principles that shape cellu-
lar identities. The fertilized egg undergoes 13 rapid nuclear 
divisions resulting in a syncytial embryo of ~6000 nuclei. By 
developmental stage 5, nuclei have moved to the embryo 
periphery, become surrounded by cell membranes, and spa-

tial gene expression patterns emerge as cells translate an-
teroposterior and dorsoventral positional information into 
transcriptional responses [e.g., (22)]. Stage 6 is marked by 
the first morphogenetic movements after cellularization 
completes and gene expression around this stage has been 
extensively assayed in whole embryos (e.g., (23), in mutants 
converting entire embryos to germ layers (4) and in dissect-
ed slices (24). Available in situ databases present systemati-
cally annotated spatial gene expression (25, 26), but they 
often stop short of single-cell resolution, direct comparison 
of several genes per cell, genome wide profiling of all tran-
scripts including noncoding RNAs, and quantitative assess-
ment of gene expression. 

To overcome these problems, we used massively parallel 
droplet-based single-cell sequencing (Drop-seq) (19) and 
quantified gene expression across >10,000 fixed cells from 
dissociated embryos (27) at a median depth of thousands of 
genes per cell. Computational analysis of the high-resolution 
in situ patterns of 84 genes (28) indicated that most if not 
all cells of the fly embryo have a unique transcriptional 
identity, highlighting the need to resolve the embryo at sin-
gle-cell resolution. Previous efforts to map sequenced em-
bryonic cells back to their origin [e.g., (21)] did so by 
reducing mapping complexity (e.g., by binning the entire 
zebra fish embryo composed of thousands of cells into 128 
expression regions) and these methods could not correctly 
map our data at the required resolution. Therefore, we de-

The Drosophila embryo at single-cell transcriptome 
resolution 
Nikos Karaiskos,1* Philipp Wahle,2* Jonathan Alles,1 Anastasiya Boltengagen,1 Salah Ayoub,1 Claudia Kipar,2 
Christine Kocks,1 Nikolaus Rajewsky,1† Robert P. Zinzen2† 
1Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz 
Association (MDC), 13125 Berlin, Germany. 2Systems Biology of Neural Tissue Differentiation, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center 
for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany. 
*These authors contributed equally to this work. 

†Corresponding author. Email: nikolaus.rajewsky@mdc-berlin.de (N.R.); robert.zinzen@mdc-berlin.de (R.P.Z.) 

By the onset of morphogenesis, Drosophila embryos consist of about 6000 cells that express distinct 
gene combinations. Here, we used single-cell sequencing of precisely staged embryos and devised 
DistMap, a computational mapping strategy to reconstruct the embryo and to predict spatial gene 
expression approaching single-cell resolution. We produce a virtual embryo with about 8000 expressed 
genes per cell. Our interactive “Drosophila-Virtual-Expression-eXplorer” (DVEX) database generates 
three-dimensional virtual in situ hybridizations and computes gene expression gradients. We used DVEX 
to uncover patterned expression of transcription factors and long noncoding RNAs, as well as signaling 
pathway components. Spatial regulation of Hippo signaling during early embryogenesis suggests a 
mechanism for establishing asynchronous cell proliferation. Our approach is suitable to generate 
transcriptomic blueprints for other complex tissues. 
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Fig. 1. De- and reconstructing the embryo by single-cell 
transcriptomics combined with spatial mapping. (A) Single-cell 
sequencing of the Drosophila embryo: ~1000 hand-picked stage 6 fly 
embryos are dissociated per Drop-seq replicate, cells are fixed and 
counted, single cells are combined with barcoded capture beads, libraries 
are prepared and sequenced. Finally, single-cell transcriptomes are 
deconvolved, resulting in a digital gene expression matrix for further 
analysis. (B) Mapping cells back to the embryo: Single-cell 
transcriptomes are correlated with high-resolution gene expression 
patterns across 84 marker genes, cells are mapped to positions within a 
virtual embryo, expression patterns are computed by combining the 
mapping probabilities with the expression levels (virtual in situ 
hybridization). 
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Single cell resolution profiling of a whole organism!
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Fig. 5. Prediction accuracy and detection of new regulators. (A) vISH 
predictions are accurate across a wide variety of expression patterns. 
Expression of CGs had not been reported previously. (B) Patterned 
expression of putative transcription factors. (C) Patterned expression of 
lncRNAs. (D) CR43432 and pan-neurogenic genes are expressed in 
complimentary patterns. Dual vISH of SoxN and CR43432 (top left), double 
in situ hybridization validates the predicted expression. CR43432 is 
additionally expressed in yolk nuclei (not shown in vISH). 

First release: 31 August 2017  www.sciencemag.org  (Page numbers not final at time of first release) 12 
 

on N
ovem

ber 1, 2017
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

Fig.	5.	Prediction	accuracy	and	
detection	of	new	regulators.	(A)	
vISH predictions	are	accurate	
across	a	wide	variety	of	expression	
patterns.	Expression	of	CGs	had	not	
been	reported	previously.	(B)	
Patterned	expression	of	putative	
transcription	factors.	(C)	Patterned	
expression	of	lncRNAs.	(D)	CR43432	
and	pan-neurogenic	genes	are	
expressed	in	complimentary	
patterns.	Dual	vISH of	SoxN and	
CR43432	(top	left),	double	in	situ	
hybridization	validates	the	
predicted	expression.	CR43432	is	
additionally	expressed	in	yolk	
nuclei	(not	shown	in	vISH).	



Single-cell analysis of 20 mouse tissues –
mouse cell atlas

Tabula Muris Consortium. (2018). Single-cell transcriptomics of 20 mouse 
organs creates a Tabula Muris. Nature, 562(7727), 367.



Single-cell analysis of 20 mouse tissues –
mouse cell atlas

Tabula Muris Consortium. (2018). Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature, 562(7727), 367.



Single-cell analysis of 2 million cells from 
developing mouse embryo

https://tabula-
muris.ds.czbiohub.org



SINGLE CELL WHOLE 
GENOME SEQUENCE (WGS)



Microfluidic droplets applied to NGS

Angela Wu 69

• Single cell DNA sequencing using Multiple Displacement Amplification (MDA) is 
known to have problems of amplification bias (e.g. preference for GC rich regions)

• Huang group at Peking University solves this problem using droplet-based MDA 
(http://www.pnas.org/content/112/38/11923.full)

Fu et al, PNAS, 2015



Microfluidic droplets applied to NGS

Angela Wu 70



Single-cell proteomics

LIFS 6170

CYTOF – cytometry and time-of-flight

Image: http://cytof.scilifelab.se/homepage/static/images/cytof.jpg
Review: Bendall, Sean C., and Garry P. Nolan. "From single cells to deep phenotypes in cancer." Nature biotechnology 30.7 (2012): 639-647.



Single-cell multi-omics

LIFS 6170

Ab-seq or CITE-seq: cellular indexing of transcriptomes and epitopes by sequencing

Stoeckius, Marlon, et al. "Simultaneous epitope and transcriptome 
measurement in single cells." Nature 201 (2017): 7.



Single-cell multi-omics

LIFS 6170

Hou, Yu, et al. "Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic 
heterogeneity in hepatocellular carcinomas." Cell research 26.3 (2016): 304-319.

scTrio-seq


